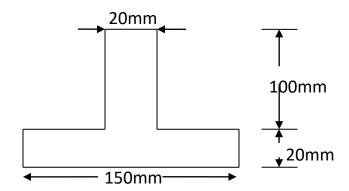
III-SEM./CIVIL ENGINEERING/ 2021(W) OLD

CET 301 - Mechanics of Material

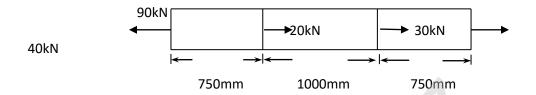
Full Marks: 80 Time- 3 Hrs

Answer any five Questions including Q No.1& 2 Figures in the right hand margin indicates marks

1. Answer **All** questions


2 x 10

- a. What do you mean by free body diagram?
- b. What is the value of M.I for rectangular, square and circular sections respectively?
- c. Define modulus of elasticity or young's modules (E).
- d. What is the value of bending moment at the fixed end of a cantilever carrying uniformly distributed load over the whole span?
- e. What do you mean by principal stress?
- f. What do you mean shear force and bending moment?
- g. What do you mean by point of contraflexure?
- h. Define Poisson's ratio.
- i. What is the maximum bending moment and shear force for a simply supported beam carrying point load at the centre and uniformly distributed load over the whole span respectively?
- j. Write the relationship between three elastic constants.


2. Answer **Any Six** Questions

5X6

a. Find the centroid of lamina shown in fig.

b. Determine the elongation of the bar. Take E for the steel as 200 Gpa.

- c. What are the assumptions in the theory of simple bending?
- d. A wooden tie is 75 mm wide, 150 mm deep and 1.5 meter long. It is subjected to an axial pull of 45000N. The stretch of the member is found to be 0.6380 mm. find the Young's modulus for the material.
- e. A wooden bar is subjected to a tensile stress of 5 MPa. What will be the values of normal and shear stress across a section which makes an angle of 25° with the direction of tensile stress.
- f. A hollow steel column has an external diameter of 250 mm and an internal diameter of 200 mm. Find the safe axial compressive load for column if the safe compressive stress is 120N/ mm^2 .
- g A cantilever beam of 1.4m length carries a uniformly distributed load of 1.5KN/m over its entire length. Draw the shear force and bending moment diagram of the cantilever.
- 3 A cantilever beam 1.5 m long carries point loads of 1 KN, 2 KN and 3 KN at 0.5 m, 1 m and 1.5 m from the fixed end respectively. Draw the shear force and bending moment diagram for the beam.
- Derive an expression for the relation between intensely of load. S.F and B.M.
- A beam 3 m long has rectangular section of 80 mm width and 120 mm depth. If 10 the beam is carrying a uniformly distributed load of 10 KN/m . Find the maximum bending stress developed in the beam?
- A T- Section beam with 100 mm x 15 mm flange and 150m x 15 mm web is subjected to a shear force of 10 KN at a section. Draw the variation of shear stress across the depth of the beam and obtain the value of maximum shear stress at the section.
- A simply supported beam of span 4.5 m carries a uniformly distributed load of 10 3.6 KN/m over a length of 2 m from the left end ' A' . Draw the S.F and B.M.D for the beam.

III-SEM./CIVIL/2021(W) OLD

Full Marks: 80

CET 302 Fluid Mechanics and Hydraulic Machine

Time- 3 Hrs

			Answer any five Questions including Q No.1& 2 Figures in the right hand margin indicates marks	
1.		Answer A	All questions	2 x 10
	a.	Define vi	scosity and write down its unit in C.G.S system.	
	b.	Define de	ensity and its unit.	
	c.		wn the relationship between atmospheric pressure, absolute	
		•	and gauge pressure.	
	d.		Archimedes principle?	
	e.		scharge and its unit.	
	f.		notch and write down its uses.	
	g.		wn Darcy Weisbatch formula.	
	h.		the main parts of a centrifugal pump?	
	i.		mechanical efficiency of a centrifugal pump? Write down its	
			atical formula.	
2	j.		the difference between poise and stoke?	(5
2.			Any Six Questions	6 x 5
	a. b		ontinuity equation.	
	b.		expression for total pressure exerted on vertical surface.	
	c.		volume of the water displaced and position of centre of buoyancy for n block of width 2.5 m and of depth 1.5 m, when it floats horizontally	
			The density of wooden block is 650 kg/m ³ and its length is 6 m.	
	d.		hydraulic gradient line and total energy line.	
	и. е.		n expression for the meta centric height of a floating body.	
	f.		wn the statement and mathematical formula for the loss of head due	
	1.		n enlargement and sudden contraction of a pipe.	
	g		hrough which water is flowing, is having diameters 20 cm and 10 cm	
	8		oss section 1 and 2 respectively. The velocity of water at section 1 is	
			4.0 m/sec. Find the velocity head at sections 1 and 2 and also rate of	
		discharge		
3			d prove Bernoulli's equation.	10
4			escribe different parts of a centrifugal pump.	10
5		•	acting reciprocating pump running at 50 rpm, delivers 0.01 m ³ /sec of	10
		_	ne diameter of the piston is 200 mm and stroke length is 400 mm.	10
		Determin	•	
		(i)	The theoretical discharge of the pump.	
		(ii)	Coefficient of discharge	
		(iii)	Slip and percentage slip of the pump.	
6		Derive th	ne discharge formula for venturimeter.	10
7		Describe	different types of flow through pipe	10
		(i)	Steady and unsteady flow	
		(ii)	Uniform and non uniform flow	
		(iii)	Laminar and turbulent flow	
		(iv)	Compressible and incompressible flow	
			1	

III-SEM./CIVIL/2021(W) OLD CET 303 Survey -1

Time- 3 Hrs

Full Marks: 80

Answer any five Ouestions including O No.1& 2 Figures in the right hand margin indicates marks 1. 2 x 10 Answer **All** questions State the basic principle of surveying. a. Differentiate between open traverse & close traverse. b. What is a contour line? c. Draw the conventional symbols of metalled road and wire fencing. d. Differentiate between plan and map. e. What is reciprocal levelling? f. Outline the uses of a cross staff. g. Convert 270° into reduced bearing system. h. i. Define a benchmark and write down different type of benchmark. Explain the term contour line. į. Answer Any Six Questions 2. 5X6 In levelling between points A and B on opposite side of a bank of a river. The a. level was set up near A and the staff reading on A and B are 2.156 & 3.568 respectively. The level was then moved and set up near B and the respective staff readings on A and B were 1.968 and 3.262. Find true difference level of A and B & write which is at high level. The length of a line measured with a 20 m chain was found to be 250m. Calculate b. the true length of the line if the chain was 10 cm too long. Describe the method of testing chain. c. The four bearings of the lines AB, BC, CD and DE are 45°20',120° 30', 200° 30' d. & 280°30' respectively. Find angles $\angle B$, $\angle C$ & $\angle D$. Draw a comparison between chain surveying and compass surveying. e. Explain the method of continuing a chain line facing the following obstacles. f. > A tall building > A river What do you mean by contour interval . Write down the factors affecting choice g of contour interval? 10 3 The following staff readings were observed successfully with the level, the instrument being changed after 3rd, 6th and 8th readings. 2.228, 1.606, 0.988, 2.090, 2.864, 1.262, 0.602, 1.982, 1.044, 2.684 meters. Enter the above readings in a page and calculate the RL of points, if the first reading was taken with staff held on a benchmark of 432.384 m 4 Write down the various characteristics of contour with diagrams wherever 10 necessary. 5 Find which station is free from local attraction & work out the correct bearings. 10 Line F.B. B.B. AB 154° 334°40' BC205°40' 23°38' 321°22' CD 140°00' DE 69°38' 249°38' Explain each reading underneath the tabular form. Describe the field procedure of chain surveying. 10 6 7 What are the sources of error in chaining? What precautions would you take to 10 guard against them?

III- SEM /CIVIL/2021(W) OLD CET-304 CIVIL ENGINEERING MATERIAL

Time: 3 Hours

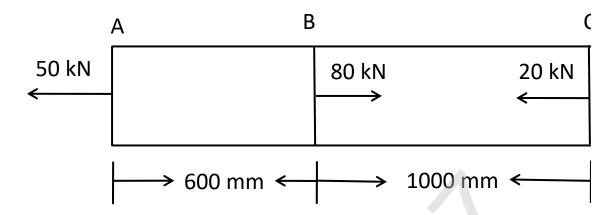
	Answer any Five Questions including Q No. 1& 2	
	Figures in the right hand margin indicates marks	
1.	Answer the following: (a) What do you mean by water cement ratio? (b) What is annual rings in timber? (c) What do you mean by dressing of stone? (d) What is an enamel paint? (e) What do you mean by curing? (f) Differentiate between cast iron and wrought iron. (g) State the size of a modular brick. (h) Write down two uses of terracotta. (i) Name the different types of tests for testing quality of cement. (j) What is an Asphalt?	2×10
2.	Answer any six questions: (a) State briefly the methods of processing painting on new wood work. (b) Why curing is necessary in cement concrete work? (c) Define plastic and its use as building materials. (d) Briefly explain the manufacturing process of plywood. (e) Describe the different salient points of good quality bricks. (f) Describe briefly the grading of aggregates. (g) Differentiate between tar and bitumen.	5×6
3.	Explain the term "Bulking". How its presence affects the cement proportion?	10
4.	What are the ingredients present in a distemper? Explain the process of distempering.	10
5.	State the operations involved in the manufacturing of bricks.	10
6.	Describe the different methods adopted for preservation of timber.	10
7.	Describe briefly the methods of manufacture of cement.	10

3rd Sem./ Civil /2021(W)OLD CET 305 Construction Technology

Time- 3 Hrs

Full Marks: 80

Answer any five Questions including Q No.1& 2 Figures in the right hand margin indicates marks 1. Answer **All** questions 2 x 10 a. List out the different components of a building. State different methods of site exploration? b Differentiate between shallow & deep foundation? c. d What is retaining wall? Define D.P.C. f. Define purlin. Define Queen Closer & King Closer. State the relation between rise and tread in a staircase? h Identify the commonly used water repellent for exterior surfaces. i. j. Define floor toping? 2 Answer **Any Six** Questions 5x6 a. Sketch and Explain Flemish Bond for 1 and 1½ brick thick wall with figure. Explain different parts of Arch with figure. b c. Classify building depending on the occupants. Show the different parts of a Queen post truss with a neat sketch. d Describe the preparation and application of paints on newly plastered wall surfaces. What is dampness? Write about its ill effects? f. Describe briefly various types of shallow foundation? g 3 Define holdfast and Describe various types of Doors used in building with neat 2+8sketch. Define deep foundation. Classify Piles according to its function. 2+8 4 5 What is stone masonary and describe any three types with neat sketches. 3+7 6 What is Distempering & Mention the application procedure of distempering a new 2+8wall? 7 Write short notes on the following 2+4+4 i. Vibrator ii. Hoisting Equipment


iii. Excavator

III-SEM./CIVIL ENGINEERING/2021(W)

TH-I Structural Mechanics

Time- 3 Hrs

		Answer any five Questions including Q No.1& 2 Figures in the right hand margin indicates marks	
1		Answer All questions	2 x 10
•	a	Define perpendicular axis theorem.	
	b	Define poisson's ratio.	
	c	State Hooke's law.	
	. d . e . f	Write down the value of maximum B.M in case of a simple supported beam of length l carrying a point load of W at its center. Draw the shear stress distribution diagram for a rectangular section and I section. Define section modulus.	
	g	Define modulus of rigidity modulus.	
	h	What is point of contraflexure.	
	i	Write down the relation between elastic modulus and bulk modulus.	
	j	Differentiate between statically determinate and statically indeterminate structure.	
2		Answer Any Six Questions	5X6
•	a	Draw the neat sketch of stress strain diagram for mild steel and explain the salient points.	
	b	The modulus of rigidity of a material is 0.8×10^5 N/mm ² . When a	
	•	6mmx6mm rod of this material was subjected to an axial pull of 3600N it was found that the lateral dimension of the rod changed to 5.9991 x 5.9991mm. Find the Poisson's ratio and the modulus of elasticity.	
	c	A brass bar having cross-sectional area of 1000mm^2 is subjected to an axial force as shown in figure. Find the change in length of the bar. Take $E=1.05 \text{x} 10^5 \text{ N/mm}^2$.	

- d Draw the shear force and bending moment diagram of a cantilever beam
- . of length '1' carrying a concentrated load W at the free end.
- e Write down the assumptions in pure bending.

.

- f A timber beam 100mm wide 150mmdeep supports a uniformly
- . distributed load over a span of 2meters. If the safe stresses are 28N/mm² in bending and 2N/mm² in shear, calculate the maximum load which can be supported by the beam.
- g A steel rod is 5m long & 50mm diameter is used as a column with one end fixed & other end free. Determine the crippling load by Euler's formula. Take E as 200Gpa.
- A beam AB 10 meters long has supports at its ends A and B. It carries a point load of 5 KN at 3 meters from A and a point load of 5 KN at 7 meters from A and a uniformly distributed load of 1 KN per meter between the point loads. Draw SF and BM diagrams for the beam.
- Find the moment of inertia of a T- section with flange as 150mm 10 x150mm and web as 150mm x50mm about x-x and y-y axis through the centre of gravity of the section.
- Derive the formula for slope and deflection for a simply supported beam AB of span l carrying a uniformly distributed load of w per unit run over the whole span. Also find the maximum deflection and slope at A.
- a) Define principal stress and principal plane.
 b) A beam of rectangular cross section is 300mm wide and 500mm deep.
 If the section is subjected to a maximum shear force of 50 KN, Find the maximum shear stress and draw the shear stress distribution along the depth of the beam.
- a) Write down the assumptions in pure torsion.
 b) A solid shaft of 200mm diameter has the same cross sectional area as that of a hollow shaft of the same material with the inside diameter 150mm. Find the ratio of power transmitted by the two shafts at the same speed.

III-SEM./CIVIL ENGG./ 2021(W)

TH-II Geo Tech. Engg

Time- 3 Hrs

		Answer any five Questions including Q No.1& 2 Figures in the right hand margin indicates marks	
1.		Answer All questions	2 x 10
	a.	What is block diagram? What is its use?	
	b.	What is Density Index?	
	c.	Define Uniformity Coefficient.	
	d.	State Darcy's Law.	
	e.	Differentiate between compaction and consolidation of soil.	
	f.	State Mohr- Coulomb's equation of shear failure.	
	g.	Differentiate between active and passive earth pressure.	
	h.	Define MDD and OMC.	
	i.	What is Zero air void line?	
	j.	What is bearing capacity of soil?	
2.		Answer Any Six Questions	6 x 5
	a.	Explain the origin and formation of Soil.	
	b.	Derive the relation between Void ratio and porosity.	
	c.	What is Consistency of Soil? Explain different types of Atterberg indices.	
	d.	Discuss about Plasticity Chart.	
	e.	Write short note on Quick sand condition.	
	f.	Compute the active and passive earth pressure force at a depth of 8m in a	
		dry cohesionless sand with angle of internal friction 30 degree and unit	
		weight 18 KN/m ³ .	
	g	How many cubic meter of earth fill can be constructed at a void ratio of	
		0.67 from 190000 m ³ of borrow material that has a void ratio of 1.1?	
3		What do you mean by sedimentation analysis? Give a brief description	10
		about pipette method.	
4		In a consolidation test void ratio decreased from 0.70 to 0.65 when the	10
		load was changed from 50 KN/m ² to 100 KN/m ² . Compute compression	
_		index and coefficient of volume change.	1.0
5		The mass and volume of a saturated clay specimen were 29.8 gm and 17.7	10
		cm ³ respectively. On oven drying the mass got reduced to 19 gm and	
		volume to 8.9 cm ³ . Calculate shrinkage limit, shrinkage ratio and	
		volumetric shrinkage. Also compute G of soil.	1.0
6		A cylindrical mould of diameter 7.5 cm contains 15 cm long sample of	10
		sand. When water flows through the soil under constant head at a rate of	
		55 cc/minute, the loss of head between two point 8 cm apart is found to be	
7		12.5 cm. Determine the coefficient of permeability of soil.	10
7		What are the types of shear failures? Describe with neat sketches.	10

3rd Sem./ Civil Engg./ 2021(W) Th3 Building Material & Construction Technology

Full Marks: 80		Time- 3 Hrs	
		Answer any five Questions including Q No.1& 2 Figures in the right hand margin indicates marks	
1.		Answer All questions	2 x 10
	a.	What is the function of alumina and silica in brick earth?	
	b.	Define water cement ratio.	
	c.	What is seasoning of timber?	
	d.	What is the role of solvent in paint?	
	e.	Differentiate between shallow foundation and deep foundation	n.
	f.	What do you mean by king closer in brick masonry?	
	g.	What do you mean by throating in stone masonry.	
	h.	Name different tests used to measure workability of concrete.	
	i.	Differentiate landing from flight.	
	j.	What is D.P.C and why it is provided.	
2.		Answer Any Six Questions	5X6
	a.	What do you mean by workability of concrete? Describe the	
		importance of workability on the strength of concrete.	
	b.	What are the characteristics of a good Timber?	
	c.	Describe the purpose of use of Arch and lintel in a building.	
	d.	Explain the characteristics of good building stone.	
	e.	Classify pile foundation and write briefly.	
	f.	State the functions of constituent parts of paints.	
	g	Why curing is necessary in cement concrete work?	
3		Classify stair depending on the method of construction.	10
4		Explain different operations involved in the brick manufacturing	ng 10
		process.	
5		Name various types of Doors. Described about any two types of	of 10
		doors with neat sketch.	
6		Explain different methods of damp proofing treatment.	10
7		Classify building depending on the occupants.	10

3rd Sem./ Civil/ 2021(W)

TH 4 Estimation & Cost Evaluation-I

Answer any five Questions including Q No.1& 2 Figures in the right hand margin indicates marks

Time- 3 Hrs

1.		Answer All questions	2 x 10
	a.	State the actual and nominal size of a standard modular bricks .	
	b	Mention the multiplying factor for painting work in case of fully glazed window and flush door.	
	c.	What do you mean by out turn?	
	d	When centre line method of estimating is preferred?	
	e f.	Calculate the amount of plastering required for a 5mX 4m room having 30 cm thickness and 3m height? Define Lead and Lift.	
	g	Calculate the additional length of bent up bar for 45* cranked bar?	
	h	Write down the units of the following items i. Honey comb brick work ii. Collapsible gate iii.Stone Masonary iv.Flooring	
	i.	Classify labourers according to OPWD.	
	j.	What is the standard weight of 20mm dia. Bar of 1m length?	
2		Answer Any Six Questions	5x6
	a.	Calculate the quantity of dry material for 10m ³ of cement concrete with proportion 1:3:6?	
	b	Draw the hierarchy of Engineering department in State Govt.	
	c.	Calculate the quantities of dry material required for 100sqm ,12mm thick plastering with proportion 1:6 ?	
	d	Mention the duties and responsibilities of Assistant Engineer.	
	e.	Calculate Sal wood work in chowkhat for door and window size of 1.2mX2.1m and 1mX1.5 m? Size of chowkhat 10cmX 8cm .Assume any suitable data.	
	f.	Estimate the following items from Fig No 1 by centre line Method. i.Earth work in Excavation	2 ½ +
		ii.Brick work in foundation and plinth	2½
	g	Calculate the dry materials required for 450m ² of 25mm thick DPC in cement concrete of Proportion (1:1.5:3)?	
3		Calculate the following items of work from Fig No 2.	5+5
		i.Earthwork in excavation in foundation. ii. Earth work in filling in plinth	
4		Calculate the cost of 10cum of brickwork in foundation and plinth with 20×10×10cm brick with cement sand mortar 1:6?	

- 5 Estimate the quantities of the following items of a residential building from fig-3 6+4i. First class brick work in foundation and plinth. ii. 2.5 cm Damp proof course. Estimate the quantities of the following items of a building from fig-4 6 6+412 mm thick inside plastering in walls (1:6) Painting doors and windows 7 [5X2] Write short notes on: $2 \frac{1}{2} x$ (a) Plinth area Estimate 4
 - (a) Plinth area Estimate(b) Contigency(c)Work charged establishment.

CDOSS SECTION OF WALL ON AA.

(d) Scrap value and Salvage Value

TWO ROOMED BUILDING Room 4m × 6m PLAN 7.5 cm L.C. Terrace Over 13 cm R.C.C. All Walls are of same section Lintels over Doors, Windows res are 15 cm thick R.B. nDPC. 2.5 cm c.c. Over 7.5 cm L.C. 60 cm Vindows W-1.00 × 1.50 m S-1.00 m × 1.50 m 30 cm Lime sono fig 1

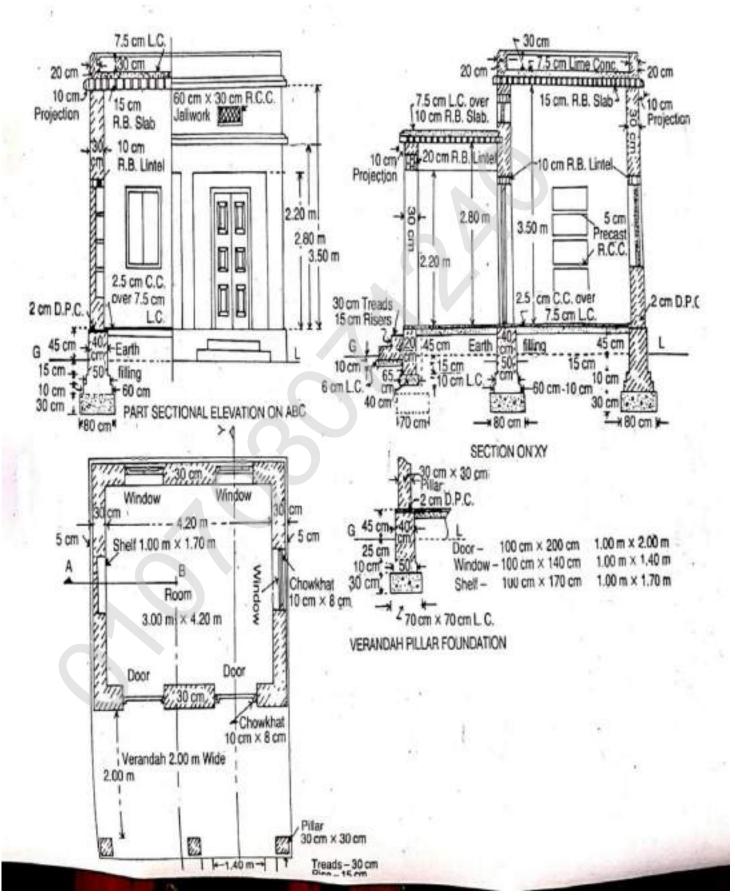
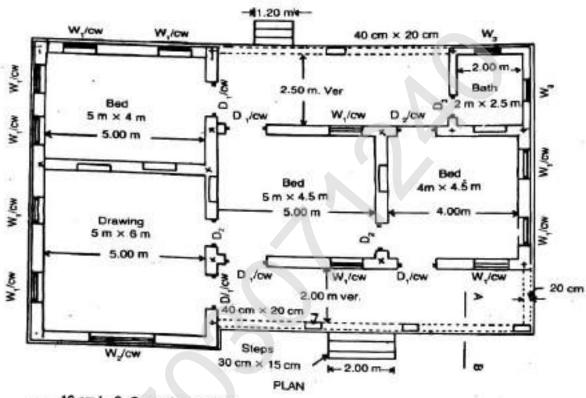
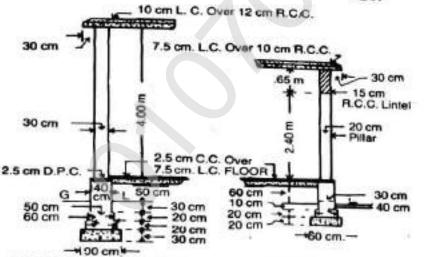




Fig 2

RESIDENTIAL BUILDING

Doors:-

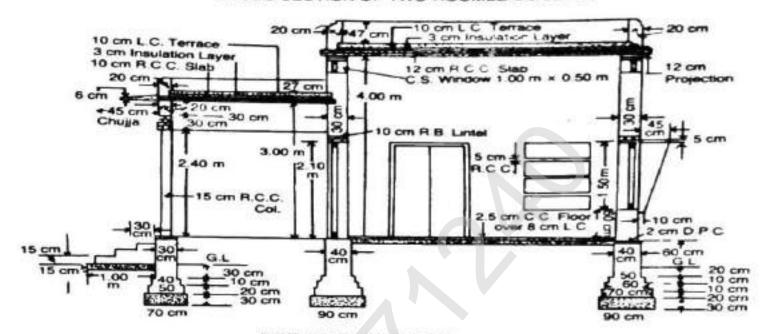
D, - 120 cm × 210 cm (1.20 m × 2.10 m) D_s - 100 cm × 200 cm (1.00 m × 2.00 m) D, - 75 cm × 180 cm (.75 m × 1.80 m).

Windows:-

W, - 100 cm × 150 cm (1.00 m × 1.50 m) W_p - 200 cm × 150 cm (2.00 m × 1.50 m) W_s - 75 cm × 120 cm (.75 m × 1.20m) C.W. - 75 cm × 60 cm (.75 m × .60 m).

Shelves:-

S - 100 cm × 150 cm (1.00 m × 1.50 m) Lintel Over Doors, Windows Etc. 15 cm R.B.


CROSS SECTION OF MAIN WALLS

CROSS SECTION AB OF VER.WALL

All walls of Drawing Rooms and Bed Rooms have same section Note-No beam has been shown in the plan.

Bath Room Walls have similar section

CROSS-SECTION OF TWO-ROOMED BUILDING

SECNI ELEVATION ON CEFG

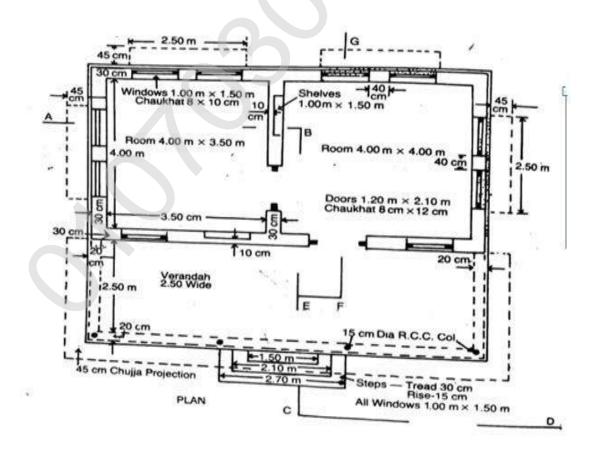


FIGURE-04

3rd Sem. Common 2021(W)

Th-5 Environmental Studies

Full Marks: 80

Time- 3 Hrs

		Answer any five Questions including Q No.1& 2 Figures in the right hand margin indicates marks	
1.		Answer All questions	2 x 10
	a.	Define acid rain.	
	b.	What is ecological succession?	
	c.	What do you mean by soil erosion?	
	d.	Define genetics and species.	
	e.	Mention any two causes of marine pollution.	
	f.	Define environment.	
	g.	What is mortality?	
	h.	What do you mean by sustainable development?	
	i.	What leads to conflicts over water?	
	j.	Define water pollution.	
2.		Answer Any Six Questions	6 x 5
	a.	Define and explain food chain with at least one example.	
	b.	Explain the changes caused by modern agriculture.	
	c.	Explain Biodiversity at National level.	
	d.	Give a brief note on ozone layer depletion along with its consequences.	
	e.	Discuss in brief 'Human Rights'.	
	f.	Discuss the needs of public awareness towards environment.	
	g	Explain cyclone disaster management.	
3		Explain the effects of mine extraction on environment and tribal people.	10
4		Explain different threats to biodiversity.	10
5		Describe forest ecosystem.	10
6		Write down the causes, effects and controlling measures of soil pollution.	10
7	a	Urban problems related to energy.	5
	b	Family welfare program.	5